App 2.0开发模式的行业看法
134
2025-08-19
# 多源数据采集示例 import pandas as pd from finclip_api import DataCollector collector = DataCollector( endpoints=[ ('mysql://user:pass@host/db', 'sales_data'), ('mongodb://host:27017', 'user_behavior'), ('https://api.example.com/iot', 'sensor_stream') ] ) # 数据清洗管道 def data_pipeline(raw_df): df = raw_df.dropna(subset=['timestamp']) df['value'] = df['value'].apply(lambda x: max(0, float(x))) return df.resample('5T').mean() processed_data = collector.execute_transform(data_pipeline)
// 规则引擎配置示例 const DecisionEngine = require('ai-decision-engine'); const engine = new DecisionEngine({ rules: [ { condition: (ctx) => ctx.userLevel === 'VIP' && ctx.orderAmount > 5000, action: (ctx) => ({ discount: 0.15, priority: 'HIGH' }) }, { condition: (ctx) => ctx.stockLevel < ctx.safetyStock, action: (ctx) => ({ reorderQty: ctx.maxStock - ctx.currentStock }) } ], fallback: (ctx) => ({ status: 'NO_ACTION' }) }); // 实时决策执行 const result = engine.execute({ userLevel: 'VIP', orderAmount: 6800, stockLevel: 150, safetyStock: 200 });
# AI流水线定义文件 version: 1.1 pipeline: - name: data_processing module: pandas_profiling params: minimal: true correlations: {"pearson": {"threshold": 0.9}} - name: feature_engineering module: sklearn.preprocessing method: StandardScaler inputs: [data_processing.output] - name: model_training module: xgboost params: objective: 'reg:squarederror' max_depth: 6 n_estimators: 200 inputs: [feature_engineering.output] - name: model_evaluation module: mlflow params: metrics: [rmse, mae, r2] experiment_name: sales_forecast
// 模型路由网关实现 package main import ( "github.com/gin-gonic/gin" "ai-gateway/pkg/models" ) func main() { r := gin.Default() // 模型路由配置 r.POST("/predict", func(c *gin.Context) { var req models.PredictRequest if err := c.ShouldBindJSON(&req); err != nil { c.JSON(400, gin.H{"error": err.Error()}) return } // 智能路由选择 model := selectModel(req.Features) result := model.Predict(req.Features) c.JSON(200, models.PredictResponse{ Model: model.Name(), Result: result, Latency: time.Since(start).Milliseconds(), }) }) r.Run(":8080") } func selectModel(features map[string]interface{}) models.Predictor { // 实现基于特征的特征路由逻辑 if features["scene"] == "financial" { return models.LoadModel("fraud_detection_v3") } return models.LoadModel("default_model") }
# AI服务容器化部署 FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 5000 # 健康检查配置 HEALTHCHECK --interval=30s --timeout=3s \ CMD curl -f http://localhost:5000/health || exit 1 CMD ["gunicorn", "--workers=4", "--bind=0.0.0.0:5000", "app:app"]
# Kubernetes部署描述文件 apiVersion: apps/v1 kind: Deployment metadata: name: ai-service spec: replicas: 3 selector: matchLabels: app: ai-service template: metadata: labels: app: ai-service spec: containers: - name: ai-container image: registry.example.com/ai-service:v1.2.3 ports: - containerPort: 5000 resources: limits: nvidia.com/gpu: 1
# 实时性能监控看板 import streamlit as st from prometheus_client import CollectorRegistry, Gauge registry = CollectorRegistry() CPU_USAGE = Gauge('cpu_usage', 'Current CPU usage', registry=registry) MEM_USAGE = Gauge('mem_usage', 'Memory usage in MB', registry=registry) MODEL_LATENCY = Gauge('model_latency', 'Prediction latency in ms', ['model_name'], registry=registry) def update_metrics(): CPU_USAGE.set(psutil.cpu_percent()) MEM_USAGE.set(psutil.virtual_memory().used / 1024 / 1024) for model in active_models: MODEL_LATENCY.labels(model.name).set(model.avg_latency) st.title('AI服务监控看板') metrics = st.columns(3) with metrics[0]: st.metric("CPU使用率", f"{CPU_USAGE}%") with metrics[1]: st.metric("内存占用", f"{MEM_USAGE}MB") with metrics[2]: st.line_chart(get_latency_trend())
// 微信小程序客服集成 Page({ data: { messages: [] }, onLoad() { this.connectSocket() }, connectSocket() { const socket = wx.connectSocket({ url: 'wss://ai.example.com/chat', header: {'X-User-ID': 'wx123456'} }) socket.onMessage(res => { const msg = JSON.parse(res.data) this.setData({ messages: [...this.data.messages, msg] }) }) }, sendMessage(content) { const msg = { type: 'text', content } wx.sendSocketMessage({ data: JSON.stringify(msg) }) } })
# 智能测试用例生成 import pytest from model_testing import generate_test_cases @pytest.mark.parametrize("input_data, expected", generate_test_cases( model="fraud_detection", boundary_values={ 'amount': [0, 10000, 1000000], 'location': ['CN', 'US', 'RU'] }, edge_cases=100 )) def test_fraud_model(input_data, expected): result = fraud_model.predict(input_data) assert result == expected, f"Failed on {input_data}"
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。