App 2.0开发模式的行业看法
248
2025-08-19
# 多源数据采集示例
import pandas as pd
from finclip_api import DataCollector
collector = DataCollector(
endpoints=[
('mysql://user:pass@host/db', 'sales_data'),
('mongodb://host:27017', 'user_behavior'),
('https://api.example.com/iot', 'sensor_stream')
]
)
# 数据清洗管道
def data_pipeline(raw_df):
df = raw_df.dropna(subset=['timestamp'])
df['value'] = df['value'].apply(lambda x: max(0, float(x)))
return df.resample('5T').mean()
processed_data = collector.execute_transform(data_pipeline)// 规则引擎配置示例
const DecisionEngine = require('ai-decision-engine');
const engine = new DecisionEngine({
rules: [
{
condition: (ctx) => ctx.userLevel === 'VIP' && ctx.orderAmount > 5000,
action: (ctx) => ({ discount: 0.15, priority: 'HIGH' })
},
{
condition: (ctx) => ctx.stockLevel < ctx.safetyStock,
action: (ctx) => ({ reorderQty: ctx.maxStock - ctx.currentStock })
}
],
fallback: (ctx) => ({ status: 'NO_ACTION' })
});
// 实时决策执行
const result = engine.execute({
userLevel: 'VIP',
orderAmount: 6800,
stockLevel: 150,
safetyStock: 200
});# AI流水线定义文件
version: 1.1
pipeline:
- name: data_processing
module: pandas_profiling
params:
minimal: true
correlations: {"pearson": {"threshold": 0.9}}
- name: feature_engineering
module: sklearn.preprocessing
method: StandardScaler
inputs: [data_processing.output]
- name: model_training
module: xgboost
params:
objective: 'reg:squarederror'
max_depth: 6
n_estimators: 200
inputs: [feature_engineering.output]
- name: model_evaluation
module: mlflow
params:
metrics: [rmse, mae, r2]
experiment_name: sales_forecast// 模型路由网关实现
package main
import (
"github.com/gin-gonic/gin"
"ai-gateway/pkg/models"
)
func main() {
r := gin.Default()
// 模型路由配置
r.POST("/predict", func(c *gin.Context) {
var req models.PredictRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.JSON(400, gin.H{"error": err.Error()})
return
}
// 智能路由选择
model := selectModel(req.Features)
result := model.Predict(req.Features)
c.JSON(200, models.PredictResponse{
Model: model.Name(),
Result: result,
Latency: time.Since(start).Milliseconds(),
})
})
r.Run(":8080")
}
func selectModel(features map[string]interface{}) models.Predictor {
// 实现基于特征的特征路由逻辑
if features["scene"] == "financial" {
return models.LoadModel("fraud_detection_v3")
}
return models.LoadModel("default_model")
}# AI服务容器化部署 FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 5000 # 健康检查配置 HEALTHCHECK --interval=30s --timeout=3s \ CMD curl -f http://localhost:5000/health || exit 1 CMD ["gunicorn", "--workers=4", "--bind=0.0.0.0:5000", "app:app"]
# Kubernetes部署描述文件 apiVersion: apps/v1 kind: Deployment metadata: name: ai-service spec: replicas: 3 selector: matchLabels: app: ai-service template: metadata: labels: app: ai-service spec: containers: - name: ai-container image: registry.example.com/ai-service:v1.2.3 ports: - containerPort: 5000 resources: limits: nvidia.com/gpu: 1
# 实时性能监控看板
import streamlit as st
from prometheus_client import CollectorRegistry, Gauge
registry = CollectorRegistry()
CPU_USAGE = Gauge('cpu_usage', 'Current CPU usage', registry=registry)
MEM_USAGE = Gauge('mem_usage', 'Memory usage in MB', registry=registry)
MODEL_LATENCY = Gauge('model_latency', 'Prediction latency in ms', ['model_name'], registry=registry)
def update_metrics():
CPU_USAGE.set(psutil.cpu_percent())
MEM_USAGE.set(psutil.virtual_memory().used / 1024 / 1024)
for model in active_models:
MODEL_LATENCY.labels(model.name).set(model.avg_latency)
st.title('AI服务监控看板')
metrics = st.columns(3)
with metrics[0]:
st.metric("CPU使用率", f"{CPU_USAGE}%")
with metrics[1]:
st.metric("内存占用", f"{MEM_USAGE}MB")
with metrics[2]:
st.line_chart(get_latency_trend())// 微信小程序客服集成
Page({
data: { messages: [] },
onLoad() {
this.connectSocket()
},
connectSocket() {
const socket = wx.connectSocket({
url: 'wss://ai.example.com/chat',
header: {'X-User-ID': 'wx123456'}
})
socket.onMessage(res => {
const msg = JSON.parse(res.data)
this.setData({ messages: [...this.data.messages, msg] })
})
},
sendMessage(content) {
const msg = { type: 'text', content }
wx.sendSocketMessage({ data: JSON.stringify(msg) })
}
})# 智能测试用例生成
import pytest
from model_testing import generate_test_cases
@pytest.mark.parametrize("input_data, expected", generate_test_cases(
model="fraud_detection",
boundary_values={
'amount': [0, 10000, 1000000],
'location': ['CN', 'US', 'RU']
},
edge_cases=100
))
def test_fraud_model(input_data, expected):
result = fraud_model.predict(input_data)
assert result == expected, f"Failed on {input_data}"版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。