App 2.0开发模式的行业看法
440
2025-08-14
from collections import defaultdict, Counter
import random
class NGramModel:
def __init__(self, n):
self.n = n
self.ngrams = defaultdict(Counter)
def train(self, code_tokens):
for i in range(len(code_tokens) - self.n):
prefix = tuple(code_tokens[i:i+self.n-1])
next_token = code_tokens[i+self.n-1]
self.ngrams[prefix][next_token] += 1
def predict(self, prefix):
prefix = tuple(prefix)
if prefix in self.ngrams:
next_tokens = list(self.ngrams[prefix].keys())
weights = list(self.ngrams[prefix].values())
return random.choices(next_tokens, weights=weights, k=1)[0]
return None
# 示例训练数据
code_tokens = ["def", "add", "(", "a", ",", "b", ")", ":", "return", "a", "+", "b"]
model = NGramModel(3)
model.train(code_tokens)
# 预测下一个token
print(model.predict(["def", "add"])) # 输出: "("from transformers import GPT2LMHeadModel, GPT2Tokenizer # 加载预训练模型 model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # 输入提示 prompt = "def factorial(n):" input_ids = tokenizer.encode(prompt, return_tensors="pt") # 生成代码 output = model.generate(input_ids, max_length=50, num_return_sequences=1) generated_code = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_code)
class ContextAwareCompleter:
def __init__(self, code_context):
self.context = code_context
def complete(self, prefix):
suggestions = []
for name, obj in self.context.items():
if name.startswith(prefix):
suggestions.append(name)
return suggestions
# 示例上下文
context = {"add": lambda a, b: a + b, "subtract": lambda a, b: a - b}
completer = ContextAwareCompleter(context)
# 补全建议
print(completer.complete("add")) # 输出: ["add"]# 安装依赖 pip install flask transformers
from flask import Flask, request, jsonify
from transformers import GPT2LMHeadModel, GPT2Tokenizer
app = Flask(__name__)
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
@app.route("/complete", methods=["POST"])
def complete_code():
data = request.json
prompt = data.get("prompt", "")
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
return jsonify({"completion": generated_code})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000)// 使用fetch调用API
async function getCodeCompletion(prompt) {
const response = await fetch("http://localhost:5000/complete", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt })
});
const data = await response.json();
return data.completion;
}
// 示例调用
getCodeCompletion("def factorial(n):").then(console.log);const vscode = require('vscode');
const axios = require('axios');
function activate(context) {
const provider = {
provideCompletionItems: async (document, position) => {
const textBeforeCursor = document.getText(
new vscode.Range(new vscode.Position(0, 0), position)
);
const response = await axios.post("http://localhost:5000/complete", {
prompt: textBeforeCursor
});
return [new vscode.CompletionItem(response.data.completion)];
}
};
context.subscriptions.push(
vscode.languages.registerCompletionItemProvider("python", provider)
);
}
exports.activate = activate;import ast
class CodeReviewer:
def __init__(self, code):
self.tree = ast.parse(code)
def check_naming(self):
issues = []
for node in ast.walk(self.tree):
if isinstance(node, ast.FunctionDef) and not node.name.islower():
issues.append(f"函数名 '{node.name}' 应使用小写字母")
return issues
# 示例代码审查
code = """
def Add(a, b):
return a + b
"""
reviewer = CodeReviewer(code)
print(reviewer.check_naming()) # 输出: ["函数名 'Add' 应使用小写字母"]from transformers import AutoModelForCausalLM, AutoTokenizer
# 加载多语言模型
model_name = "microsoft/codebert-base-mlm"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# 生成Java代码
prompt = "public class Main {"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))class CodeOptimizer:
def __init__(self, code):
self.code = code
def suggest_optimizations(self):
optimizations = []
if "for i in range(len(list)):" in self.code:
optimizations.append("建议使用enumerate函数替代range(len(list))")
return optimizations
# 示例优化建议
code = """
for i in range(len(my_list)):
print(my_list[i])
"""
optimizer = CodeOptimizer(code)
print(optimizer.suggest_optimizations()) # 输出: ["建议使用enumerate函数替代range(len(list))"]版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。