App 2.0开发模式的行业看法
300
2025-08-14
from collections import defaultdict, Counter import random class NGramModel: def __init__(self, n): self.n = n self.ngrams = defaultdict(Counter) def train(self, code_tokens): for i in range(len(code_tokens) - self.n): prefix = tuple(code_tokens[i:i+self.n-1]) next_token = code_tokens[i+self.n-1] self.ngrams[prefix][next_token] += 1 def predict(self, prefix): prefix = tuple(prefix) if prefix in self.ngrams: next_tokens = list(self.ngrams[prefix].keys()) weights = list(self.ngrams[prefix].values()) return random.choices(next_tokens, weights=weights, k=1)[0] return None # 示例训练数据 code_tokens = ["def", "add", "(", "a", ",", "b", ")", ":", "return", "a", "+", "b"] model = NGramModel(3) model.train(code_tokens) # 预测下一个token print(model.predict(["def", "add"])) # 输出: "("
from transformers import GPT2LMHeadModel, GPT2Tokenizer # 加载预训练模型 model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # 输入提示 prompt = "def factorial(n):" input_ids = tokenizer.encode(prompt, return_tensors="pt") # 生成代码 output = model.generate(input_ids, max_length=50, num_return_sequences=1) generated_code = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_code)
class ContextAwareCompleter: def __init__(self, code_context): self.context = code_context def complete(self, prefix): suggestions = [] for name, obj in self.context.items(): if name.startswith(prefix): suggestions.append(name) return suggestions # 示例上下文 context = {"add": lambda a, b: a + b, "subtract": lambda a, b: a - b} completer = ContextAwareCompleter(context) # 补全建议 print(completer.complete("add")) # 输出: ["add"]
# 安装依赖 pip install flask transformers
from flask import Flask, request, jsonify from transformers import GPT2LMHeadModel, GPT2Tokenizer app = Flask(__name__) model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) @app.route("/complete", methods=["POST"]) def complete_code(): data = request.json prompt = data.get("prompt", "") input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=50, num_return_sequences=1) generated_code = tokenizer.decode(output[0], skip_special_tokens=True) return jsonify({"completion": generated_code}) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000)
// 使用fetch调用API async function getCodeCompletion(prompt) { const response = await fetch("http://localhost:5000/complete", { method: "POST", headers: { "Content-Type": "application/json" }, body: JSON.stringify({ prompt }) }); const data = await response.json(); return data.completion; } // 示例调用 getCodeCompletion("def factorial(n):").then(console.log);
const vscode = require('vscode'); const axios = require('axios'); function activate(context) { const provider = { provideCompletionItems: async (document, position) => { const textBeforeCursor = document.getText( new vscode.Range(new vscode.Position(0, 0), position) ); const response = await axios.post("http://localhost:5000/complete", { prompt: textBeforeCursor }); return [new vscode.CompletionItem(response.data.completion)]; } }; context.subscriptions.push( vscode.languages.registerCompletionItemProvider("python", provider) ); } exports.activate = activate;
import ast class CodeReviewer: def __init__(self, code): self.tree = ast.parse(code) def check_naming(self): issues = [] for node in ast.walk(self.tree): if isinstance(node, ast.FunctionDef) and not node.name.islower(): issues.append(f"函数名 '{node.name}' 应使用小写字母") return issues # 示例代码审查 code = """ def Add(a, b): return a + b """ reviewer = CodeReviewer(code) print(reviewer.check_naming()) # 输出: ["函数名 'Add' 应使用小写字母"]
from transformers import AutoModelForCausalLM, AutoTokenizer # 加载多语言模型 model_name = "microsoft/codebert-base-mlm" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 生成Java代码 prompt = "public class Main {" input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=50) print(tokenizer.decode(output[0], skip_special_tokens=True))
class CodeOptimizer: def __init__(self, code): self.code = code def suggest_optimizations(self): optimizations = [] if "for i in range(len(list)):" in self.code: optimizations.append("建议使用enumerate函数替代range(len(list))") return optimizations # 示例优化建议 code = """ for i in range(len(my_list)): print(my_list[i]) """ optimizer = CodeOptimizer(code) print(optimizer.suggest_optimizations()) # 输出: ["建议使用enumerate函数替代range(len(list))"]
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。