App 2.0开发模式的行业看法
247
2025-08-21
# 用户输入自然语言指令 prompt = """ 生成一个Python函数,功能如下: 1. 从CSV文件读取数据 2. 处理缺失值:数值列用中位数填充,分类列用众数填充 3. 对年龄列进行分箱处理:0-18为未成年,19-35为青年,36-60为中年,61以上为老年 4. 输出处理后的DataFrame """ # AI生成的代码 import pandas as pd def preprocess_data(file_path): df = pd.read_csv(file_path) # 处理缺失值 numeric_cols = df.select_dtypes(include=['number']).columns categorical_cols = df.select_dtypes(include=['object']).columns for col in numeric_cols: df[col].fillna(df[col].median(), inplace=True) for col in categorical_cols: df[col].fillna(df[col].mode()[0], inplace=True) # 年龄分箱 bins = [0, 18, 35, 60, 150] labels = ['未成年', '青年', '中年', '老年'] df['age_group'] = pd.cut(df['age'], bins=bins, labels=labels) return df
// 原始路由代码 app.post('/api/users', async (req, res) => { try { const newUser = await User.create(req.body); res.status(201).json(newUser); } catch (error) { res.status(400).json({ error: error.message }); } }); // AI生成的测试用例 const request = require('supertest'); const app = require('../app'); const User = require('../models/user'); describe('POST /api/users', () => { beforeEach(async () => { await User.deleteMany({}); }); it('应成功创建新用户并返回201状态码', async () => { const res = await request(app) .post('/api/users') .send({ name: 'John Doe', email: 'john@example.com' }); expect(res.statusCode).toEqual(201); expect(res.body).toHaveProperty('_id'); }); it('缺少必填字段时应返回400错误', async () => { const res = await request(app) .post('/api/users') .send({ name: 'John' }); expect(res.statusCode).toEqual(400); expect(res.body).toHaveProperty('error'); }); });
// 原始代码 List<String> filterNames(List<Employee> employees) { List<String> names = new ArrayList<>(); for (Employee emp : employees) { if (emp.getAge() > 30 && emp.getDepartment().equals("IT")) { names.add(emp.getName().toUpperCase()); } } return names; } // AI优化建议 List<String> optimizedFilterNames(List<Employee> employees) { return employees.stream() .filter(emp -> emp.getAge() > 30) .filter(emp -> "IT".equals(emp.getDepartment())) .map(emp -> emp.getName().toUpperCase()) .collect(Collectors.toList()); }
// 添加并行处理 List<String> parallelFilterNames(List<Employee> employees) { return employees.parallelStream() .filter(emp -> emp.getAge() > 30) // ...其余逻辑不变 }
# 原始问题代码 def calculate_discount(price, discount): return price - (price * discount) # 用户输入:price=100, discount=0.2 → 预期输出80,实际输出99.8 # AI诊断过程: 1. 识别到浮点数精度问题 2. 检测到未处理百分比转换 3. 建议修复方案: def fixed_calculate_discount(price, discount): return round(price * (1 - discount), 2) # 添加类型检查和异常处理 def safe_calculate_discount(price: float, discount: float) -> float: if not 0 <= discount <= 1: raise ValueError("Discount must be between 0 and 1") return round(price * (1 - discount), 2)
# AI生成的Dockerfile FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD ["gunicorn", "--bind", "0.0.0.0:8000", "app:app"] # AI生成的GitHub Actions配置 name: CI/CD Pipeline on: push: branches: [ main ] jobs: build-and-deploy: runs-on: ubuntu-latest steps: - name: Checkout code uses: actions/checkout@v2 - name: Set up Python uses: actions/setup-python@v2 with: python-version: '3.9' - name: Build Docker image run: | docker build -t myapp:${{ github.sha }} . - name: Deploy to AWS uses: aws-actions/configure-aws-credentials@v1 with: aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }} aws-region: us-east-1 run: | aws ecr get-login-password | docker login --username AWS --password-stdin 1234567890.dkr.ecr.us-east-1.amazonaws.com docker push 1234567890.dkr.ecr.us-east-1.amazonaws.com/myapp:${{ github.sha }}
上下文感知增强:能理解项目整体架构
多模态支持:支持图表生成、API文档自动创建
实时协作:多人编程时的智能冲突解决
# 人机协作最佳实践 while True: requirement = get_user_input() ai_draft = generate_code(requirement) if validate_code(ai_draft): optimized_code = human_refine(ai_draft) implement(optimized_code) else: request_human_intervention()
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。