App 2.0开发模式的行业看法
553
2025-08-21
# 用户输入自然语言指令 prompt = """ 生成一个Python函数,功能如下: 1. 从CSV文件读取数据 2. 处理缺失值:数值列用中位数填充,分类列用众数填充 3. 对年龄列进行分箱处理:0-18为未成年,19-35为青年,36-60为中年,61以上为老年 4. 输出处理后的DataFrame """ # AI生成的代码 import pandas as pd def preprocess_data(file_path): df = pd.read_csv(file_path) # 处理缺失值 numeric_cols = df.select_dtypes(include=['number']).columns categorical_cols = df.select_dtypes(include=['object']).columns for col in numeric_cols: df[col].fillna(df[col].median(), inplace=True) for col in categorical_cols: df[col].fillna(df[col].mode()[0], inplace=True) # 年龄分箱 bins = [0, 18, 35, 60, 150] labels = ['未成年', '青年', '中年', '老年'] df['age_group'] = pd.cut(df['age'], bins=bins, labels=labels) return df
// 原始路由代码
app.post('/api/users', async (req, res) => {
try {
const newUser = await User.create(req.body);
res.status(201).json(newUser);
} catch (error) {
res.status(400).json({ error: error.message });
}
});
// AI生成的测试用例
const request = require('supertest');
const app = require('../app');
const User = require('../models/user');
describe('POST /api/users', () => {
beforeEach(async () => {
await User.deleteMany({});
});
it('应成功创建新用户并返回201状态码', async () => {
const res = await request(app)
.post('/api/users')
.send({
name: 'John Doe',
email: 'john@example.com'
});
expect(res.statusCode).toEqual(201);
expect(res.body).toHaveProperty('_id');
});
it('缺少必填字段时应返回400错误', async () => {
const res = await request(app)
.post('/api/users')
.send({ name: 'John' });
expect(res.statusCode).toEqual(400);
expect(res.body).toHaveProperty('error');
});
});// 原始代码
List<String> filterNames(List<Employee> employees) {
List<String> names = new ArrayList<>();
for (Employee emp : employees) {
if (emp.getAge() > 30 && emp.getDepartment().equals("IT")) {
names.add(emp.getName().toUpperCase());
}
}
return names;
}
// AI优化建议
List<String> optimizedFilterNames(List<Employee> employees) {
return employees.stream()
.filter(emp -> emp.getAge() > 30)
.filter(emp -> "IT".equals(emp.getDepartment()))
.map(emp -> emp.getName().toUpperCase())
.collect(Collectors.toList());
}// 添加并行处理
List<String> parallelFilterNames(List<Employee> employees) {
return employees.parallelStream()
.filter(emp -> emp.getAge() > 30)
// ...其余逻辑不变
}# 原始问题代码
def calculate_discount(price, discount):
return price - (price * discount)
# 用户输入:price=100, discount=0.2 → 预期输出80,实际输出99.8
# AI诊断过程:
1. 识别到浮点数精度问题
2. 检测到未处理百分比转换
3. 建议修复方案:
def fixed_calculate_discount(price, discount):
return round(price * (1 - discount), 2)
# 添加类型检查和异常处理
def safe_calculate_discount(price: float, discount: float) -> float:
if not 0 <= discount <= 1:
raise ValueError("Discount must be between 0 and 1")
return round(price * (1 - discount), 2)# AI生成的Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["gunicorn", "--bind", "0.0.0.0:8000", "app:app"]
# AI生成的GitHub Actions配置
name: CI/CD Pipeline
on:
push:
branches: [ main ]
jobs:
build-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.9'
- name: Build Docker image
run: |
docker build -t myapp:${{ github.sha }} .
- name: Deploy to AWS
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
run: |
aws ecr get-login-password | docker login --username AWS --password-stdin 1234567890.dkr.ecr.us-east-1.amazonaws.com
docker push 1234567890.dkr.ecr.us-east-1.amazonaws.com/myapp:${{ github.sha }}上下文感知增强:能理解项目整体架构
多模态支持:支持图表生成、API文档自动创建
实时协作:多人编程时的智能冲突解决
# 人机协作最佳实践 while True: requirement = get_user_input() ai_draft = generate_code(requirement) if validate_code(ai_draft): optimized_code = human_refine(ai_draft) implement(optimized_code) else: request_human_intervention()
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。