触点数字孪生,揭秘它的独特魅力
349
2023-03-28
本文目录一览:
物联网时代 工业大数据八大应用场景
工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。
1.加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。
这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。
2.产品故障诊断与预测
这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。在马航MH370失联客机搜寻过程中,波音公司获取的发动机运转数据对于确定飞机的失联路径起到了关键作用。我们就拿波音公司飞机系统作为案例,看看大数据应用在产品故障诊断中如何发挥作用。在波音的飞机上,发动机、燃油系统、液压和电力系统等数以百计的变量组成了在航状态,这些数据不到几微秒就被测量和发送一次。以波音737为例,发动机在飞行中每30分钟就能产生10TB数据。
这些数据不仅仅是未来某个时间点能够分析的工程遥测数据,而且还促进了实时自适应控制、燃油使用、零件故障预测和飞行员通报,能有效实现故障诊断和预测。再看一个通用电气(GE)的例子,位于美国亚特兰大的GE能源监测和诊断(MD)中心,收集全球50多个国家上千台GE燃气轮机的数据,每天就能为客户收集10G的数据,通过分析来自系统内的传感器振动和温度信号的恒定大数据流,这些大数据分析将为GE公司对燃气轮机故障诊断和预警提供支撑。风力涡轮机制造商Vestas也通过对天气数据及期涡轮仪表数据进行交叉分析,从而对风力涡轮机布局进行改善,由此增加了风力涡轮机的电力输出水平并延长了服务寿命。
3.工业物联网生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。
4.工业供应链的分析和优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
互联网大数据营销专家罗百辉表示,工业制造企业利用销售数据、产品的传感器数据和出自供应商数据库的数据,可准确地预测全球不同区域的需求。由于可以跟踪库存和销售价格,可以在价格下跌时买进,所以制造企业便可节约大量的成本。如果再利用产品中传感器所产生的数据,知道产品出了什么故障,哪里需要配件,他们还可以预测何处以及何时需要零件。这将会极大地减少库存,优化供应链。以海尔公司为例,海尔公司供应链体系很完善,它以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合全球供应链资源和全球用户资源。在海尔供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,海尔公司能够持续进行供应链改进和优化,保证了海尔对客户的敏捷响应。美国较大的OEM供应商超过千家,为制造企业提供超过1万种不同的产品,每家厂商都依靠市场预测和其他不同的变量,如销售数据、市场信息、展会、新闻、竞争对手的数据,甚至天气预报等来销售自己的产品。
5.产品销售预测与需求管理
通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。在某些分析中我们可以发现,在开学季高校较多的城市对文具的需求会高很多,这样我们可以加大对这些城市经销商的促销,吸引他们在开学季多订货,同时在开学季之前一两个月开始产能规划,以满足促销需求。对产品开发方面,通过消费人群的关注点进行产品功能、性能的调整,如几年前大家喜欢用音乐手机,而现在大家更倾向于用手机上网、拍照分享等,手机的拍照功能提升就是一个趋势,4G手机也占据更大的市场份额。通过大数据对一些市场细节的分析,可以找到更多的潜在销售机会。
6.生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。
7.产品质量管理与分析
传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。这些海量数据究竟是企业的包袱,还是企业的金矿呢?如果说是后者的话,那么又该如何快速地拨云见日,从“金矿”中准确地发现产品良率波动的关键原因呢?这是一个已经困扰半导体工程师们多年的技术难题。
某半导体科技公司生产的晶圆在经过测试环节后,每天都会产生包含一百多个测试项目、长度达几百万行测试记录的数据集。按照质量管理的基本要求,一个必不可少的工作就是需要针对这些技术规格要求各异的一百多个测试项目分别进行一次过程能力分析。如果按照传统的工作模式,我们需要按部就班地分别计算一百多个过程能力指数,对各项质量特性一一考核。这里暂且不论工作量的庞大与繁琐,哪怕有人能够解决了计算量的问题,但也很难从这一百多个过程能力指数中看出它们之间的关联性,更难对产品的总体质量性能有一个全面的认识与总结。然而,如果我们利用大数据质量管理分析平台,除了可以快速地得到一个长长的传统单一指标的过程能力分析报表之外,更重要的是,还可以从同样的大数据集中得到很多崭新的分析结果。
8.工业污染与环保检测
《穹顶之下》令人印象深刻的一点是通过可视化报表,柴静团队向观众传递雾霾问题的严峻性、雾霾的成因等等。
这给我们带来的一个启示,即大数据对环保具有巨大价值。《穹顶之下》图表的原生数据哪里来的呢?其实并非都是凭借高层关系获取,不少数据都是公开可查,在中国政府网、各部委网站、中石油中石化官网、环保组织官网以及一些特殊机构,可查询的公益环保数据越来越多,包括全国空气、水文等数据,气象数据,工厂分布及污染排放达标情况等数据等等。只不过这些数据太分散、太专业、缺少分析、没有可视化,普通人看不懂。如果能够看懂并保持关注,大数据将成为社会监督环保的重要手段。近日百度上线《全国污染监测地图》就是一个很好的方式,结合开放的环保大数据,百度地图加入了污染检测图层,任何人都可以通过它查看全国及自己所在区域省市,所有的在环保局监控之下的排放机构(包括各类火电厂、国控工业企业和污水处理厂等)的位置信息、机构名称、排放污染源的种类,最近一次环保局公布的污染排放达标情况等。可查看距离自己最近的污染源,出现提醒,该监测点检测项目,哪些超标,超标多少倍。这些信息可以实时分享到社交媒体平台,告知好友,提醒大家一同注意污染源情况及个人安全健康。
工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。
以上是小编为大家分享的关于物联网时代 工业大数据八大应用场景的相关内容,更多信息可以关注环球青藤分享更多干货
6月29日,由南京市人民政府与未来论坛共同主办,中国国际贸易促进委员会南京市分会、南京经济技术开发区管理委员会、南京市国际商会承办的 “2019未来论坛·南京峰会”正式 开幕,本次峰会的主题为 “同行・共创” 。
在开幕式上,南京市人民政府副市长胡洪,红杉资本中国基金合伙人、未来论坛理事周逵作为主办方代表分别对所有参会嘉宾表达了欢迎与感谢。南京经济技术开发区管委会副主任沈吟龙对人工智能产业新地标“中国(南京)智谷”的打造作出重点介绍。
在随后的大会主旨演讲环节上,浙江大学求是特聘教授、浙江大学医学院附属第一医院双聘教授、浙江大学应用数学研究所所长、浙江大学理学部图像处理研发中心主任、大数据算法与分析技术国家工程实验室杭州创新中心主任 孔德兴 ,元禾华创投委会主席、未来论坛理事 陈大同 ,英国帝国理工学院教授、中国人工智能产业创新联盟专业委员会主任委员及鲲云 科技 联合创始人及首席科学家、英国计算机学会(BCS)会士、英国皇家工程院院士、美国电子电气工程师协会(IEEE)会士 陆永青 ,地平线创始人兼CEO、未来论坛青年理事 余凯 ,为与会者带来了海内外最前沿的科研信息及成果转化经验。
在上午的论坛上,行业优秀的企业家、科学家与投资人围绕 工业物联网 、 中国芯片 两大热点 科技 领域主题进行了演讲和创新对话。
智能制造是振兴实体经济、加快工业转型升级的重要突破口。我国近年来相继推出一系列智能制造的战略规划,通过工业物联网实现数字化、网络化,能够提升企业的生产效率和产品附加值,缓解生产成本。
上海全应 科技 有限公司董事长兼CEO夏建涛 在“工业互联网技术及其在热电生产智能化中的应用”的主题演讲里带来了在工业互联网时代,关于热电产业化的观点。他认为我国工业主要有两大问题:
上海全应 科技 有限公司董事长兼CEO夏建涛
工业互联网平台出现能够解决上述问题,它对离散制造业来讲重点在于智能化的管理,对流程制造业重点在于工艺的控制。其在工业企业运用中主要有三个场景, 第一是在生产中运用,第二是对企业的数据进行管理和决策优化,第三是实现全产业链的资源优化配置与协同 。夏建涛以热能生产行业为例,分享了工业互联网在产业里如何使用及使用的效果。同时他还提到“海量数据+智能算法+超级算力”会产生超越人智力的智能化系统,将深刻改变人类 社会 。
会后,亿欧新制造频道与夏建涛进行了交流,他表示目前的工业互联网最终是要落实到具体的应用场景,企业采购任何一个设备或是系统,他需要计算投入产出比,需要能够切实地解决现有的问题,“一个工业互联网平台,或者一种技术能否说服客户,取决于你是否能为客户提供切实可计算的价值。”
玄羽 科技 董事长李鸿峰 在主题演讲“AI赋能3C制造”分享了在3C行业的智能制造。玄羽 科技 选择3C制造作为智能制造的一个切入点,是因为看到了3C制造在今天已经面临着 三大困境 :
玄羽 科技 董事长李鸿峰
当一个产业面临这些困境的时候,就必须考虑通过技术创新和成本优化进行转型升级,这就催生了他们对智能化制造的需求。3C制造行业的特点一是 高度 离散 ,二是 迭代非常快 ,这样的行业优势在于:通过 科技 手段能带来效率提升的价值空间很大。劣势在于:由于其太离散,改造的过程十分困难。在这一背景下,玄羽 科技 最开始选择的路径是以头部企业为主,它的特点是产线基础比较好,理念比较强,可以带动整个行业。
他表示 智能制造 并非是自动化,而是智能化 。在今天的技术上,智能制造一定是算法和算力的结合,通过数据和算法的方式,切入到智能制造,并且带来巨大的价值。
慧联无限首席科学家胡昱 在主题演讲“让产业动能更强劲——数字化产业园区2.0”中主要分享了工业物联网的工作场景之一“数字化产业园区”的具体应用。
慧联无限首席科学家胡昱
“数字化产业园区”的价值在于利用LPWAN技术帮助园区内管理者提高管理水平和对园区入驻企业提升服务质量,他详细介绍了智慧园区解决方案的架构、平台的概述以及在实际案例中利用数字化运营的方法,并分别概述了解决了来自园区不同角色的痛点问题,希望最终打造一个构建结合园区的开发商、运营商,地方政府还有行业协会综合的融合平台。
工业物联网的核心是信息智能与工业智能的融合。通过采用信息技术,例如物联网、大数据、人工智能、区块链、5G等实现以数据驱动的工业应用的信息化与智能化,进而提高产业效率,创造价值。协合新能源集团执行董事兼CTO、未来论坛青创联盟成员尚笠尚笠作为对话环节的主持人与各位企业领袖、科学家针对发展工业物联网,难度究竟在哪里?即将到来的5G网络时代将怎样推进工业和制造业的数字化变革?从工业自动化向工业智能化升级,产业和企业如何把握新机遇等问题展开了讨论。
科技 创新对话——工业物联网:“智造”升级
慧联无限首席科学家胡昱 认为工业物联网在中国会不断往前走,但是在这个过程中,有一些定数会被打破,包括我们的工业。他认为工业物联网的IT和OT的融合还需从组织架构和战略两方面来进行。另外,从工业物联网技术创新角度看,他认为传感器创新非常重要。
清华大学计算机系长聘副教授、博士生导师李丹 认为,现在工业物联网从概念到落地,已经在是在缓慢增长的阶段,后面会越来越好。这是因为技术上是成熟的,产业的需求也在。另外,他认为IT和OT的结合,本身就会催生出新的技术创新的机会。
玄羽 科技 董事长李鸿峰 认为工业物联网要有一个循序渐进的客观规律。工业物联网IT和OT的融合,就是两化的融合。这种融合依托的是“彼此理解”的融合,信息化的人一定要了解工业上的东西,工业人一定了解信息化的东西,在实际的项目上进行打磨、成长,这样才能在将来真正意义上增加两化人才。他认为工业物联网创新,数据是基础,没有数据就没有依托了,数据从量变到质变,就会衍生出应用的创新。
毕马威中国管理咨询服务主管合伙人刘建刚 认为工业物联网的应用现在不仅仅是一个概念的问题。怎么把概念落为实处?一是要从需求导向;二是战略驱动;三是企业本身的能力建设;四是必须要场景切入;五是生态系统协同的能力。从工业互联网行业发展来讲,要有标准:一是工业互联网接口开放的标准;二是融合后的IT架构的标准。
上海全应 科技 有限公司董事长兼CEO夏建涛 认为工业物联网只有正向、增强性的循环,这个产业才能真正落地。工业物联网要IT、OT深度在一起,认为云+端的创新,对工业物联网技术创新非常重要。
启明创投合伙人叶冠泰 认为,促进工业互联网的发展,非常必要的一点是IT和OT的紧密结合,但更为重要的关键点是缩短打通整个行业的利益链条。
【推荐阅读】:
制造突围,粤港澳大湾区企业转型在路上
物联网、大数据、机器人纷纷助力,离散制造业要走的智能化之路
工业互联网的前世今生:初探工业互联网
现在的世界,已经进入了一个概念满天飞的年代。和工业大数据相关的概念非常多,包括工业4.0、物联网、云计算、人工智能、智能制造等等,接下来,我会 追根溯源 ,把这些概念都理清楚,这样,我们才能更好地理解工业大数据。今天先聊一聊工业4.0是怎么回事。
工业4.0的概念来源比较清晰,不像大数据概念的来源,说不清,道不明。工业4.0是德国联邦教研部与联邦经济技术部在2013年 汉诺威工业博览会 上提出的概念。它实际上是德国人为了推广他们的工业技术而提出的一个营销概念。这个概念应该说提的非常成功,仿佛一夜之间,全世界都在讲自己的产品符合工业4.0的理念。
当时德国人提的工业4.0概念中,主要是描绘了制造业的未来愿景(注意,是制造业,而不是工业,德国人在这里其实偷换了概念,工业的范畴远比制造业大得多),提出了继蒸汽机、规模化生产、电子信息技术等三次工业革命后,人类即将迎来的以生产高度数字化、网络化、机器自组织为标志的第四次工业革命。
在德国人描述的四次工业革命中,第一次是以蒸汽机为动力的机械生产设备导致的第一次工业革命,该次工业革命与18世纪末基本结束。第二次是基于劳动力分工(即流水线),以电为动力的大规模生产为核心的第二次工业革命,该次革命始于20世纪初, 第三次工业革命 始于20世纪70年代,其标志是电子信息技术的大规模使用使得工业自动化程度大为提高,现在,德国人认为我们进入了第四次工业革命,在本次工业革命中,软件不再仅仅是为了控制仪器或者执行具体的工作而编写的,也不再仅仅被嵌入到产品和生产系统中。产品和服务借助于互联网和其他网络服务,通过软件、电子及环境的结合,生产处全新的产品和服务。越来越多的产品功能无需操作人员介入,而是可以自主进行生产。
从这个概念可以看出,工业4.0实际上是德国等先进制造业发达国家在进行一次大的制造业升级,以期保持其在国际竞争中的地位。因此,工业4.0概念提出之后,各国纷纷跟进,美国提出了工业物联网,中国提出了工业2025,其实都是想在这一次工业革命中保持或者进一步占领国际市场,获得竞争优势。
工业4.0中涉及到的技术概念有很多,大致可以通过下面这张图来进行描述。
从底层看,工业4.0包括互联网时代的三大底层基础设施,工业物联网(这是美国人的概念)、云计算、工业大数据,在具体应用上,包括两大硬件技术3D打印和工业机器人,两大软件技术工业网络和工作自动化,同时还囊括了未来的两大技术虚拟现实和人工智能。这些技术构成了工业4.0的技术图谱。
由此可以看出,工业大数据是工业4.0的一部分,它是为工业4.0提供软件技术支撑的,也是工业4.0的核心部分。由于工业4.0的最终目的是提高企业的生产力、生产效率及生产的灵活性,但又受制于生产的复杂性和复杂生产带来的超高难度的管理,因此,现代化的生产要求从产品、工具、运输、设备的每一个环节都配备传感器,并更够通过标准协议彼此通讯,在这种情况下,企业生产就必须依赖全新的软件系统,它可以覆盖整个产品生命周期,它可以协调海量的数据流程,它可以自主控制设备进行复杂化的、自定义的生产作业,而这和核心的一切,就是工业大数据。
到今天,工业大数据的概念已将慢慢的超越了工业4.0,工业大数据既是工业4.0的核心,也在独立的发展,既有重合的部分,也有超越的部分。
不管概念如何发展,以人工智能、大数据为标志的第四次工业革命已经在我们的身边展开了,通过这一次的工业革命,我们可以进行超级复杂流程的管理、大规模生产过程的优化和决策的快速执行,实现复杂生产和个性商业活动的高度整合,使人类的生产效率再上升一个数量级,使生产力得到进一步的释放。
关于工业物联网大数据和工业物联网数据采集盒的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 工业物联网大数据的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于工业物联网数据采集盒、工业物联网大数据的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。