微信小程序蓝牙开发教程带你探索物联网的便捷与魅力
871
2022-12-12
本文目录一览:
方法通过静态分析方式和动态分析方式相结合,实现应用程序行为分析检测。静态分析通过Android的静态反汇编和反编译获取应用程序的源代码和资源配置文件,然后通过检测源代码中是否包含敏感行为特征,实现静态行为分析检测。动态分析结合沙箱系统,实现程序的动态运行并输出行为日志,然后对输出的行为日志分析,实现对应用程序动态行为分析检测。静态分析由于某些程序精心构造,无法对一些未将特征编码在代码文件中行为进行分析,在检测时无法获取潜在的应用程序行为;动态分析由于自动运行行为的随机性,不能完全触发应用程序操作。两种方式都存在这不足,所以本课题在实现分析系统时采取了动静态分析相结合方式,以更全面的实现Android应用程序的行为分析检测,为安全分析提供依据。
在主营业务收入审计中选择运用以下分析性复核审计方法:
(1)将本期与上期的主营业务收入进行比较,分析产品销售由结构和价格的变动是否正常,并分析异常变动的原因;
(2)比较本期各月主营业务收入的波动情况,分析其变动趋势是否正常,并查明异常现象和重大波动的原因;
(3)计算本期重要产品的毛利率,分析比较本期与上期各类产品毛利率的变化情况,注意收入与成本是否配比,并查清重大波动和异常情况的原因;
(4)计算重要客户的及其产品毛利率,分析比较本期与上期有无异常变化。
主营业务收入审计相关内容扩展:
一、主营业务收入审计目标一般包括:
1.确定主营业务收入的内容、数额是否合理、正确、完整;
2.确定对销货退回、销售与折让的处理是否适当;
3.确定主营业务收入的会计处理是否正确;
4.确定主营业务收入的披露是否恰当。
二、主营业务收入实质性测试审计程序
1.取得或编制主营业务收入项目明细表,复核加计正确,并与报表数、总账数和明细账合计数核对相符。
2.查明主营业务收入的确认原则、方法,注意其是否符合会计准则和会计制度规定的收入实现条件,前后期是否一致。特别要注意视同销售行为的会计处理是否恰当。
对产品销售收入确认的审查,主要是采用抽查法、核对法和验算法。
3.选择运用以下分析性复核审计方法,作比较分析:
(1)将本期与上期的主营业务收入进行比较,分析产品销售由结构和价格的变动是否正常,并分析异常变动的原因;
(2)比较本期各月主营业务收入的波动情况,分析其变动趋势是否正常,并查明异常现象和重大波动的原因;
(3)计算本期重要产品的毛利率,分析比较本期与上期各类产品毛利率的变化情况,注意收入与成本是否配比,并查清重大波动和异常情况的原因;
(4)计算重要客户的及其产品毛利率,分析比较本期与上期有无异常变化。
4.获取产品价格目录,抽查售价是否符合价格政策,并注意销售给关联方或关系密切的重要客户的产品价格是否合理,有无低价或高价结算以转移收入的现象。
5.抽取被审计期间内一定数量的销售,审查开票、记账、发货日期是否相符,品名、数量、单价、金额等是否与发运凭证、销售等一致,编制测试表。
6.实施销售的截止期测试。截止期测试是实质性审计测试中常用的一种具体审计技术,其目的主要在于确定被审计单位主营业务收入业务的会计记录归属期是否正确;应计入本期或下期的主营业务收入有否被推迟至下期或提前至本期,防止利润操纵行为。
在审计过程中,注册会计师在审计中应该注意把握三个与主营业务收入确认有着密切关系的日期:一是开具日期或者收款日期;二是记账日期;三是发货日期(对服务业则是提供劳务的日期)。检查三者是否归属于同一适当会计期间是营业收入截止期测试的关键所在。
围绕上述三个重要日期,在审计实务中,注册会计师可以考虑选择三条审计路线实施营业收入的截止期测试:
一是以账簿记录为起点。从报表日前后若干天的账簿记录直至记账凭证,检查存根与发运凭证,目的是证实已入账收入是否在同一期间已开具并发货,有无多记收入。这种方法的优点是比较直观,容易追查至相关凭证记录,以确定其是否应在本期确认收入,特别是在连续审计两个以上会计期间时,检查跨期收入十分便捷,可以提高审计效率。其缺点是缺乏全面性和连贯性,只能查多记,无法查漏记,尤其是当本期漏记收入延至下期,而审计时尚未及时登账时,不易发现应记入报告期收入而未记的情况。使用这种方法主要是为了防止高估营业收入。
二是以销售为起点。从报表日前后若干天的存根查至发运凭证与账簿记录,确定已开具的货物是否已发货并于同一会计期间确认收入。具体做法是抽取在报表日前后使用的若干张存根,追查至发运凭证和账簿记录,查明有无漏记收入现象。这种方法也有其优缺点,优点是较全面、连贯,容易发现漏记的收入;缺点是较费时费力,有时难以查找相应的发货及账簿记录,而且不易发现多记的收入。使用该方法时应注意两点:
(1)相应的发运凭证是否齐全,特别应注意有无报告期内已作收入而下期初用红字冲回,并且无发货、收货记录,以此来调节前后期会计利润的情况;
(2)被审计单位的存根是否已全部提供,有无隐瞒。为此,应查看被审计单位的领购簿,尤其应关注普通的领购和使用情况。使用这种方法主要是为了防止低估营业收入。
三是以发运凭证为起点。从报表日前后若干天的发运凭证至开具情况与账簿记录,确定营业收入是否已记入恰当的合计期间。该方法的优缺点与方法二类似,具体操作中还应考虑被审计单位的会计政策才能做出恰如其分的处理。使用这种方法主要也是为了防止低估营业收入。
常用的列了九种供参考:
一、公式拆解
所谓公式拆解法就是针对某个指标,用公式层层分解该指标的影响因素。
举例:分析某产品的销售额较低的原因,用公式法分解
二、对比分析
对比法就是用两组或两组以上的数据进行比较,是最通用的方法。
我们知道孤立的数据没有意义,有对比才有差异。比如在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。
下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。
三、A/Btest
A/Btest,是将Web或App界面或流程的两个或多个版本,在同一时间维度,分别让类似访客群组来访问,收集各群组的用户体验数据和业务数据,最后分析评估出最好版本正式采用。A/Btest的流程如下:
(1)现状分析并建立假设:分析业务数据,确定当前最关键的改进点,作出优化改进的假设,提出优化建议;比如说我们发现用户的转化率不高,我们假设是因为推广的着陆页面带来的转化率太低,下面就要想办法来进行改进了
(2)设定目标,制定方案:设置主要目标,用来衡量各优化版本的优劣;设置辅助目标,用来评估优化版本对其他方面的影响。
(3)设计与开发:制作2个或多个优化版本的设计原型并完成技术实现。
(4)分配流量:确定每个线上测试版本的分流比例,初始阶段,优化方案的流量设置可以较小,根据情况逐渐增加流量。
(5)采集并分析数据:收集实验数据,进行有效性和效果判断:统计显著性达到95%或以上并且维持一段时间,实验可以结束;如果在95%以下,则可能需要延长测试时间;如果很长时间统计显著性不能达到95%甚至90%,则需要决定是否中止试验。
(6)最后:根据试验结果确定发布新版本、调整分流比例继续测试或者在试验效果未达成的情况下继续优化迭代方案重新开发上线试验。
流程图如下:
四、象限分析
通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常与产品分析、市场分析、客户管理、商品管理等。比如,下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。
高点击率高转化的广告,说明人群相对精准,是一个高效率的广告。高点击率低转化的广告,说明点击进来的人大多被广告吸引了,转化低说明广告内容针对的人群和产品实际受众有些不符。高转化低点击的广告,说明广告内容针对的人群和产品实际受众符合程度较高,但需要优化广告内容,吸引更多人点击。低点击率低转化的广告,可以放弃了。还有经典的RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额 (Monetary)三个维度分成八个象限。
象限法的优势:
(1)找到问题的共性原因
通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。例如上面广告的案例中,第一象限的事件可以提炼出有效的推广渠道与推广策略,第三和第四象限可以排除一些无效的推广渠道;
(2)建立分组优化策略
针对投放的象限分析法可以针对不同象限建立优化策略,例如RFM客户管理模型中按照象限将客户分为重点发展客户、重点保持客户、一般发展客户、一般保持客户等不同类型。给重点发展客户倾斜更多的资源,比如VIP服务、个性化服务、附加销售等。给潜力客户销售价值更高的产品,或一些优惠措施来吸引他们回归。
五、帕累托分析
帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。
一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。
常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。
百分比在 70%(含)以内,划分为 A 类。百分比在 70~90%(含)以内,划分为 B 类。百分比在 90~100%(含)以内,划分为 C 类。以上百分比也可以根据自己的实际情况调整。
ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。
六、漏斗分析
漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。
上图是经典的营销漏斗,形象展示了从获取用户到最终转化成购买这整个流程中的一个个子环节。相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的。
整体漏斗模型的核心思想其实可以归为分解和量化。比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。
还有经典的黑客增长模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。
从下面这幅AARRR模型图中,能够比较明显的看出来整个用户的生命周期是呈现逐渐递减趋势的。通过拆解和量化整个用户生命周期各环节,可以进行数据的横向和纵向对比,从而发现对应的问题,最终进行不断的优化迭代。
七、路径分析
用户路径分析追踪用户从某个开始事件直到结束事件的行为路径,即对用户流向进行监测,可以用来衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,其最终目的是达成业务目标,引导用户更高效地完成产品的最优路径,最终促使用户付费。如何进行用户行为路径分析?
(1)计算用户使用网站或APP时的每个第一步,然后依次计算每一步的流向和转化,通过数据,真实地再现用户从打开APP到离开的整个过程。
(2)查看用户在使用产品时的路径分布情况。例如:在访问了某个电商产品首页的用户后,有多大比例的用户进行了搜索,有多大比例的用户访问了分类页,有多大比例的用户直接访问的商品详情页。
(3)进行路径优化分析。例如:哪条路径是用户最多访问的;走到哪一步时,用户最容易流失。
(4)通过路径识别用户行为特征。例如:分析用户是用完即走的目标导向型,还是无目的浏览型。
(5)对用户进行细分。通常按照APP的使用目的来对用户进行分类。如汽车APP的用户可以细分为关注型、意向型、购买型用户,并对每类用户进行不同访问任务的路径分析,比如意向型的用户,他进行不同车型的比较都有哪些路径,存在什么问题。还有一种方法是利用算法,基于用户所有访问路径进行聚类分析,依据访问路径的相似性对用户进行分类,再对每类用户进行分析。
以电商为例,买家从登录网站/APP到支付成功要经过首页浏览、搜索商品、加入购物车、提交订单、支付订单等过程。而在用户真实的选购过程是一个交缠反复的过程,例如提交订单后,用户可能会返回首页继续搜索商品,也可能去取消订单,每一个路径背后都有不同的动机。与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径。
用户行为路径图示例:
八、留存分析
用户留存指的是新会员/用户在经过一定时间之后,仍然具有访问、登录、使用或转化等特定属性和行为,留存用户占当时新用户的比例就是留存率。留存率按照不同的周期分为三类,以登录行为认定的留存为例:
第一种 日留存,日留存又可以细分为以下几种:
(1)次日留存率:(当天新增的用户中,第2天还登录的用户数)/第一天新增总用户数
(2)第3日留存率:(第一天新增用户中,第3天还有登录的用户数)/第一天新增总用户数
(3)第7日留存率:(第一天新增用户中,第7天还有登录的用户数)/第一天新增总用户数
(4)第14日留存率:(第一天新增用户中,第14天还有登录的用户数)/第一天新增总用户数
(5)第30日留存率:(第一天新增用户中,第30天还有登录的用户数)/第一天新增总用户数
第二种 周留存,以周度为单位的留存率,指的是每个周相对于第一个周的新增用户中,仍然还有登录的用户数。
第三种 月留存,以月度为单位的留存率,指的是每个月相对于第一个周的新增用户中,仍然还有登录的用户数。留存率是针对新用户的,其结果是一个矩阵式半面报告(只有一半有数据),每个数据记录行是日期、列为对应的不同时间周期下的留存率。正常情况下,留存率会随着时间周期的推移而逐渐降低。下面以月留存为例生成的月用户留存曲线:
九、聚类分析
聚类分析属于探索性的数据分析方法。通常,我们利用聚类分析将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。聚类结果要求组内对象相似性较高,组间对象相似性较低。在用户研究中,很多问题可以借助聚类分析来解决,比如,网站的信息分类问题、网页的点击行为关联性问题以及用户分类问题等等。其中,用户分类是最常见的情况。
常见的聚类方法有不少,比如K均值(K-Means),谱聚类(Spectral Clustering),层次聚类(Hierarchical Clustering)。以最为常见的K-means为例,如下图:
可以看到,数据可以被分到红蓝绿三个不同的簇(cluster)中,每个簇应有其特有的性质。显然,聚类分析是一种无监督学习,是在缺乏标签的前提下的一种分类模型。当我们对数据进行聚类后并得到簇后,一般会单独对每个簇进行深入分析,从而得到更加细致的结果。
1. 描述型分析
这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。
例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。
2. 诊断型分析
描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。
良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。
3. 预测型分析
预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。
预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。
4. 指令型分析
数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。
工作分析的方法
(一)访谈法
访谈法又称为面谈法,是一种应用最为广泛的职务分析方法。是指工作分析人员就某一职务或者职位面对面地询问任职者、主管、专家等人对工作的意见和看法。在一般情况下,应用访谈法时可以以标准化访谈格式记录,目的是便于控制访谈内容及对同一职务不同任职者的回答相互比较。
(二)问卷调查法
问卷调查法是工作分析中最常用的一种方法,具体来说,由有关人员事先设计出一套职务分析的问卷,再由随后工作的员工来填写问卷,也可由工作分析人员填写,最后再将问卷加以归纳分析,做好详细的记录,并据此写出工作职务描述。
(三)观察法
观察法是一种传统的职务分析方法,指的是工作分析人员直接到工作现场,针对特定对象(一个或多个任职者)的作业活动进行观察,收集、记录有关工作的内容、工作间的相互关系、人与工作的关系以及工作环境、条件等信息,并用文字或图标形式记录下来,然后进行分析与归纳总结的方法。
(四)工作日志法
工作日志法又称工作写实法,指任职者按时间顺序详细记录自己的工作内容与工作过程,然后经过归纳、分析,达到工作分析的目的的一种方法。
(五)资料分析法
为降低工作分析的成本,应当尽量利用原有资料,例如责任制人本等人事文件,以对每个项工作的任务、责任、权利、工作负荷、任职资格等有一个大致的了解,为进一步调查、分析奠定基础。
(六)能力要求法
指完成任何一项工作的技能都可由更基本的能力加以描述。
(七)关键事件法
关键事件法要求分析人员、管理人员、本岗位员工,将工作过程中的“关键事件”详细地加以记录,可在大量收集信息后,对岗位的特征要求进行分析研究的方法(关键事件是使工作成功或失败的行为特征或事件,如成功与失败、盈利或与亏损、高效与低产等)。
分析性程序包括以下几个步骤:
1、确定将要执行的计算及比较。
2、估计期望值。
3、执行计算/比较。
4、分析数据及确认重大差异。
5、调查重大非预期差异。
6、确定对审计计划的影响
分析性审计程序是一种审计方法,也被称为分析性程序,是指审计人员通过分析和比较信息(包括财务信息和非财务信息)之间的关系或计算相关的比率,以确定审计重点、获取审计证据和支持审计结论的一种审计方法。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。